46. Consider the state space model of a system, as given below

\( \begin{bmatrix}\dot x_1\\\dot x_2\\\dot x_3 \end{bmatrix} = \begin{bmatrix}-1&1&0\\0&-1&0\\0&0&-2\end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}+ \begin{bmatrix}0\\4\\0 \end{bmatrix}u\) ; \(y=\begin{bmatrix}1&1&1\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} \)

The system is

(B)  uncontrollable and observable

 (A)  controllable and observable

(D)  controllable and unobservable

(C)  uncontrollable and unobservable


Did not found what you are looking for, Ask your doubt or Help by your contribution

Enter your search keyword:

Search form


Here is a chance to join biggest community of technical Students,
Tutors with FREE learning resources and so much more.
It takes less then 60 seconds.