46. Consider the state space model of a system, as given below

\( \begin{bmatrix}\dot x_1\\\dot x_2\\\dot x_3 \end{bmatrix} = \begin{bmatrix}-1&1&0\\0&-1&0\\0&0&-2\end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}+ \begin{bmatrix}0\\4\\0 \end{bmatrix}u\) ; \(y=\begin{bmatrix}1&1&1\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} \)

The system is
 

(B)  uncontrollable and observable
 

(C)  uncontrollable and unobservable
 

 (A)  controllable and observable
 

(D)  controllable and unobservable

Hint: 
Explanation: 

Answer- (B)  uncontrollable and observable

Discuss the solution.

Did not found what you are looking for, Ask your doubt or Help by your contribution

Enter your search keyword:

Search form

Wait!

Here is a chance to join biggest community of technical Students,
Tutors with FREE learning resources and so much more.
It takes less then 60 seconds.